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STRUCTURAL APPROACH IN PROBLEMS

OF THE LIMIT EQUILIBRIUM OF BRITTLE SOLIDS

WITH STRESS CONCENTRATORS

UDC 539.3V. I. Smirnov

Versions of the formulation of a two-dimensional fracture criterion are discussed. Possible methods
for determining the value of the structural fracture parameter are analyzed. Theoretical estimates
are compared with experimental data and results obtained using alternative criteria.
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Introduction. Recently, the so-called nonlocal fracture criteria (see [1] and the bibliography therein), in
particular, the integral criterion, or the mean-stress criterion have been expensively used to estimate the strength
of materials with stress concentrators. The idea of averaging stresses on a certain interval of length d ahead of
a crack tip was proposed by Neuber [2] and Novozhilov [3]. The discrete Neuber–Novozhilov criterion in a one-
dimensional formulation has been extensively used by various researchers. A two-dimensional mean-stress criterion
for a disk-shaped opening mode crack was proposed in [4].

The presence of the averaging parameter d in the criterion implies that the fracture process has its own
structure, which generally may not be related to the structure of the material. By virtue of this, following [5],
we will call the mean-stress criterion the structural criterion and the Neuber–Novozhilov approach the structural
approach.

Advantages of the structural criterion are simplicity, applicability to singular defects (cracks and angular
notches) and regular defects (holes and cavities), and the possibility of using approximate and exact analytical
solutions of elastic problems. In the latter case, as the defect size gradually decreases, passage to the limit of a
defect-free material occurs (see also [6]). In the formulations of the criterion considered in the present paper, we use
only two material constants: the tensile strength limit σc and the static fracture toughness KIc, both mechanical
characteristics being determined from the results of standard tests.

Unlike in the one-dimensional formulation of the structural criterion, in the two-dimensional case there are
some difficulties due to the necessity of choosing a particular value of the structural parameter d for a quantitative
estimation of the dimensional critical loads. For media with smooth defects (notches, holes, and cavities), deter-
mination of the parameter d remains an important problem in the one-dimensional criterion, too. In the present
paper, computational schemes of solving these problems are analyzed.

1. One-Dimensional Fracture Criterion. We consider an elastic homogeneous isotropic plane weakened
by a rectilinear central crack of length 2l. The Ox axis, whose origin is at the center of the crack, passes through the
line of location of the crack. At infinity, the plane is extended by a uniform load p in the Oy direction perpendicular
to the crack.

For the fracture stress on the continuation of the crack, the approximate solution has the form

σy = KI/
√

2π(x − l) + O(1), x − l → 0, x > l, (1.1)

where KI = p
√

πl is the stress intensity factor.
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The exact solution is given by

σy = px/
√

x2 − l2 , y = 0, x > l. (1.2)

To the asymptotic solution (1.1) we apply the structural criteria

1
d

l+d∫

l

σy(x) dx = σc, (1.3)

where d is the structural fracture parameter and σc is the tensile strength limit of the material. Assuming that
fracture occurs if the equality KI = KIc is satisfied (the Irwin criterion), we obtain the quantity

d = 2K2
Ic/(πσ2

c ) (1.4)

and the critical load

p∗ = KIc/
√

πl . (1.5)

Substitution of the exact solution (1.2) into criterion (1.3) yields an expression for the critical load that is
valid for a crack of any length:

p∗ = σc/
√

1 + 2l/d . (1.6)

It is of interest to compare the quantity p∗ with the critical load calculated by the Griffith and Leonov–
Panasyuk criteria and with experimental results. The dependence of the fracture load on the length of a central
crack in a glass plate loaded uniaxially at the edges by a uniform load along the normal to the fracture plane
was studied experimentally in [7]. The mechanical characteristics of silicate glass are as follows: tensile strength
limit σc = 39.2 MPa [8], Poisson’s ratio ν = 0.24, elastic modulus E = 67 GPa, and specific surface fracture energy
γ = 2.1·10−6 J/mm2 (2.1·10−3 MPa ·mm); the fracture toughness is determined using the material characteristics ν,
E, and γ [7] and is equal to KIc = 0.546 MPa ·m 1/2.

The formulas for the critical load have the following form [9]:
— for the Griffith criterion,

p∗ =
√

2Eγ/(π(1 − ν2)l) ; (1.7)

— for the Leonov–Panasyuk criterion,

p∗ = (2/π)σc arccos [exp (−δc/(8σccl))]. (1.8)

In (1.8), c = (1 − ν2)/(πE) and δc = 2γ/σc is the critical crack opening, which depends on the specific
fracture energy and the strength of the material.

Results of calculation using formulas (1.5)–(1.8) and the experimental data of [7] are presented in Fig. 1.
It is evident that in the examined range of crack lengths, the criteria give identical estimates of the critical load.
Differences are observed only for 2l < 1 mm.

We note that for l → 0, the Griffith and Irwin criteria give an infinitely large value of the critical load,
whereas the Leonov–Panasyuk criterion and the structural criterion imply that p∗ → σc. In other words, a plate
with a crack of zero length has the strength of a defect-free material. However, the rate of approach of the critical
load to the strength limit is different:

— for criterion (1.6),

p∗(l) = σc(1 − l/d) + O(l2);

— for criterion (1.8),

p∗(l) = σc + O(0).

Therefore, for the indicated material, the critical load determined according to (1.8) for crack lengths of
0–0.03 mm is almost unchanged and is equal to σc. The structural parameter for glass is d = 0.124 mm.

Equating the critical loads determined by the Irwin (1.5) and Griffith (1.7) criteria, we obtain the well-known
relationship between the specific surface fracture energy γ and the fracture toughness KIc (for planar deformation):

γ = (1 − ν2)K2
Ic/(2E). (1.9)
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Fig. 1. Critical load versus crack length: the curve refers to the calculation
results and the points refer to the experimental data [7].

We now determine the dependence of the structural parameter d on the specific fracture energy γ. From (1.4),
we have

K2
Ic = πdσ2

c/2. (1.10)

Substitution of (1.10) into (1.9) yields

d = 4Eγ/(π(1 − ν2)σ2
c ),

which almost coincides with the estimate [10]

d = 4Eγ/(3(1 − ν2)σ2
c ).

Using polar coordinates (r, θ), we consider the uniaxial extension of an infinite elastic plate with a circular
hole of radius a. If a uniform tensile stress p applied at infinity acts in the direction θ = ±π/2, the maximum value
of the normal fracture circumferential stress along the axis θ = 0 is given by the expression

σθ(r, 0) = p[1 + (1/2)(a/r)2 + (3/2)(a/r)4]. (1.11)

As in the previous case, the elementary fracture cell is a segment; therefore, according to the structural
approach, the criterial relation is written as

1
d

a+d∫

a

σθ(r, 0) dr = σc.

Calculation of the integral in the last equality yields
p∗
σc

=
1

1 − (Θ/2)(Θ/(Θ + 1) − 1) − (Θ/2)[(Θ/(Θ + 1))3 − 1]
, (1.12)

where Θ = a/d. As Θ → 0, we have p∗ = σc, and as Θ → ∞, we have p∗/σc = 1/3.
In the problem of a rectilinear central crack, the expression for the structural parameter d is obtained by

comparing the critical loads calculated by the structural criterion and the Irwin criterion. We analyze the possibility
of using this expression in the present problem.

Results of experiments in which the critical load p∗ was determined for uniaxial extension of plates with a
circular hole of diameter 0.7–16.0 mm are given in [11]. A plate of dimensions 120 × 400 × 2 mm (the dimensions
were chosen such that the edge effects were negligible) was made of SCh 12-28 gray cast iron with mechanical
properties σc = 170 MPa, KIc = 14 MPa ·m1/2, ν = 0.3, and E = 100 · 103 MPa. For this material, the structural
fracture parameter d determined according to (1.4) is 4.3 mm.

Figure 2 shows a curve of the critical load on the hole radius a calculated by formula (1.12) (curve 1). It
is evident that the results of calculation using the structural approach are in good agreement with experimental
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Fig. 2. Critical load versus hole radius: 1) structural criterion; 2) Leonov–Rusinko criterion; the
points refer to the experimental data (gray cast iron).

Fig. 3. Geometry of the fictitious crack in a plate with a hole.

data. Figure 2 gives a similar curve (curve 2) plotted using the criterion proposed by Leonov and Rusinko [12]:
p∗ = σc/k, where k is the macrostress concentration factor:

k =
2να2

(1 + ν)(1 + α)2(1 + 2α + 2α2)
+

3 + 11α + 25α2 + 40α3 + 42α4 + 24α5 + 8α6

(1 + 2α + 2α2)3
. (1.13)

Here α = ρ/a (ρ is the structural characteristic of the material that takes into account its microinhomogeneity).
The theoretical value of the parameter ρ was obtained in [12]:

ρ = βEγ/σ2
c . (1.14)

Here the parameter β depends only on Poisson’s ratio:

β = [4ν
√

1 +
√

2 + (3 − 4ν)
√

2 − 1]2/[4π(1 +
√

2 )(1 − ν2)]. (1.15)

In (1.15), the coefficient β varies in the range from 0.347 to 0.545 for ν = 0–0.5.
For gray cast iron, the theoretical value of the structural parameter ρ calculated by formula (1.14) is 1.3 mm.

However, the best agreement with the experimental data is obtained for ρ = 1.4 [11].
As a → 0, the stress concentration factor k tends to the theoretical value k = 3. At the same time, as follows

from (1.13), as a → ∞, we have k → 1, which corresponds to the strength of the defect-free material (p∗ → σc).
A different approach to solving this problem is applied in [6]. A so-called fictitious crack is introduced to

estimate the fracture load p∗ for the uniaxial extension of a plate with a circular hole of radius a. This is due to
the need to have any characteristic with the dimension of length to compare it with the hole size. A fictitious crack
of length L with origin on the boundary of the hole is located along the dangerous section (Fig. 3).

We assume that the edges of the fictitious crack are subjected to a stress σθ(r, 0) distributed according
to (1.11). If the stress is specified at the crack edges, the corresponding stress intensity factor can be found from
the well-known formula

KI =
p

√
πL/2

a+L∫

a

σθ(r, 0)
√

r − a

L − (r − a)
dr. (1.16)

Substitution of σθ from (1.11) into (1.16) yields

KI = p
√

πL/2[1 + (1/2)(1 + ϑ)−3/2 + (3/2)(1 + ϑ)−7/2(1 + ϑ/2 + ϑ2/8)], (1.17)
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Fig. 4. Critical load versus hole radius: 1) structural criterion (1.12); 2) fictitious crack (1.19);
3) experimental data [6] for epoxy–carbon fiber; 4) the same for epoxy–glass fiber.

where ϑ = L/a. As ϑ → 0, the expression in square brackets (1.17) becomes the stress concentration factor Kt. As
ϑ → ∞, we obtain a plate without a hole with strength σc and a fictitious crack, which begins “to propagate” as
KI → KIc. Thus, in the limiting case, we set ϑ → ∞, p → σc, and KI → KIc. Then, relation (1.17) implies

L = 2K2
Ic/(πσ2

c ). (1.18)

The right side of expression (1.18) is identical to the expression for the structural parameter d (1.4). Thus, in the
structural approach, a fictitious crack of length L is equivalent to a prefracture zone of length d.

Assuming that the equality σc = KIc

√
2/(πL) following from (1.18) is satisfied as p → p∗, from (1.17) we

obtain the critical load. For convenience of comparison with the experimental results and the value of the fracture
load based on the structural approach (1.12), we introduce the dimensionless parameter Θ = a/L. Then, from (1.17)
we finally obtain

p∗
σc

=
1

1 + (1/2)(1 + 1/Θ)−3/2 + (3/2)(1 + 1/Θ)−7/2(1 + 1/(2Θ) + 1/(8Θ2))
. (1.19)

A curve of the critical load versus relative radius of the hole in the plate is shown in logarithmic coordinates
in Fig. 4. The experimental data on the fracture of composite plates with a circular hole are taken from a paper
[6], which contains references to original papers.

From Fig. 4 it follows that over the entire range of hole sizes, the structural approach gives lower values of the
maximum load than the fictitious crack method, which, however, contributes to the safety factor of the structure.
The maximum difference is 21.4% at Θ = 0.85.

Thus, in the present problem, as in the problem of extension of a plane with a central crack, the structural
parameter d can also be determined, as a first approximation, from formula (1.4).

2. Two-Dimensional Fracture Criterion. We consider the axisymmetric problem of the extension of an
elastic space with a disk-shaped crack of radius a subjected to a uniform load p at infinity. In cylindrical coordinates
(r, θ, z), the asymptotic form of the fracture stress on the continuation of the crack is written as

σz = KI/
√

2π(r − a) + O(1), r − a → 0, r > a, (2.1)

where

KI = 2p
√

a/π . (2.2)

The accurate representation of the tensile stress σz on the continuation of the crack is also known:

σz = −(2p/π)[arcsin (a/r) − a/
√

r2 − a2 ] + p, z = 0, r > a. (2.3)

Applying the Irwin criterion to (2.2), we obtain

p∗ = (1/2)KIc

√
π/a . (2.4)
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Let us apply the structural criterion. Assuming that the elementary fracture cell has the shape of a ring
sector [a ≤ r ≤ a + d and −d/(2a) ≤ θ ≤ d/(2a)] with area S = d(2ad + d2)/(2a), we write the fracture criterion as
follows:

2
2ad + d2

a+d∫

a

σz(r)r dr = σc. (2.5)

Applying (2.5) to the asymptotic solution (2.1) and performing integration in view of (2.2), we obtain the
critical load. Equating its value to (2.4), we obtain the dependence of the fracture toughness KIc on the strength
limit σc:

KIc = σc

√
πd

2
1 + d/(2a)
1 + d/(3a)

. (2.6)

The structural fracture parameter is now determined as the root of the cubic equation (2.6) and depends not only
on the strength constants of the material but also on the crack radius. We denote this parameter by d0.

As follows from (2.6), d0 → d as d0/a → 0. Passing to the limit as a/d0 → 0, we obtain d0(0) = 4d/9.
Thus, the structural parameter d0 can be treated as a generalization of the parameter d, and d as an asymptotic
(as d0/a → 0) or degenerate case d0.

The critical load determined from the exact solution (2.3) is equal to

p∗
σc

=
π(1 − η2

0)
2(arccosη0 + η0

√
1 − η2

0 )
.

Here η0 = a/(a + d0), where 0 ≤ η0 ≤ 1, and d0 = d0(a) is the root of Eq. (2.6) in which d needs to be replaced by
d0.

In this problem, one can also use the one-dimensional version of the fracture criterion

1
d

a+d∫

a

σz(r) dr = σc. (2.7)

We introduce the dimensionless parameter η = a/(a + d) (0 ≤ η ≤ 1). Then,

p∗/σc = π(1 − η)/(2 arccos η).

In the case of the one-dimensional fracture criterion (2.7), the value of p∗ is slightly smaller than that in the
two-dimensional criterion (2.5).

The critical load can also be determined [9] by the Griffith criterion

p∗/σc =
√

2a∗/a

and by the critical crack opening criterion

p∗
σc

=

{
1, a < a∗,

√
2a∗/a

√
1 − a∗/(2a), a ≥ a∗,

(2.8)

where

a∗ = πEδc/(8(1 − ν2)σc);

δc = 2γ/σc is the critical crack opening.
Figure 5 gives curves plotted with allowance for the equivalence of the power and energetic fracture criteria

[equality (1.9)]. An analysis shows that for integration over a ring (the two-dimensional version) and for integration
over a segment (one-dimensional version), the difference between the values of p∗/σc determined using the structural
criterion does not exceed 1.7%. However, there is a significant difference between the critical loads determined by
the critical crack opening criterion and by the structural criterion for cracks of small size (the maximum difference
is 18.5%).

Condition (2.8) implies that for a disk-shaped crack, the size a∗ is the limiting one, i.e., cracks of radius
a < a∗ can be ignored and the material can be considered free from defects. This conclusion, however, does not
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Fig. 5. Critical load versus radius of a disk-shaped crack: 1) one-dimensional structural criterion; 2) two-
dimensional structural criterion; 3) Griffith (Irwin) criterion; 4) critical crack opening criterion.

follow directly from the solution of the problem: the exact solution is only the second line in (2.8), and in the range
a∗/2 ≤ a ≤ a∗, the critical loading decreases from σc to zero, and dp∗/da = 0 for a = a∗. In [9], solution (2.8) was
constructed using additional assumptions, which limited the solution to the case a ≥ a∗.

From a physical point of view, the existence of such small cracks that “do not influence” the strength of
disk-shaped cracks is explained in [9] by the fact that the propagation of a crack of diameter 2a < 2a∗ is energetically
unfavorable since in the case of crack opening, the amount of elastic energy released is smaller than the amount of
the effective surface energy accumulated on the free surfaces of the crack. It is not clear, however, why such limiting
sizes are not found, for example, in the case of a central crack (planar problem).

As an example of a smooth stress concentrator, we consider the problem of an elastic space containing a
spherical cavity of radius p and subjected to uniaxial uniform extension by a stress a. The extension is performed
in the z direction in cylindrical coordinates (r, θ, z). The fracture stress σz in the plane z = 0 is expressed as

σz(r) = p
(
1 +

4 − 5ν

2(7 − 5ν)
a3

r3
+

9
2(7 − 5ν)

a5

r5

)
. (2.9)

In this problem, the two-dimensional structural fracture criterion has the same form as in the case of a
disk-shaped crack (2.5). Substitution of expression (2.9) into the criterial relation (2.5) yields

p∗
σc

=
1 + η

1 + η(1 + η)(1 + 3η2/(7 − 5ν))
, (2.10)

where η = a/(a + d).
Using the one-dimensional structural criterion (2.7), we obtain

p∗
σc

=
1

1 + η(1 + η)[1 + 3(1 + η2)/(2(7 − 5ν))]/4
. (2.11)

From (2.10) and (2.11), it follows that p∗ → σc as η → 0 (an infinitesimal defect) and

p∗
σc

=
2(7 − 5ν)
3(9 − 5ν)

=
1

Kt

as η → 1 (a infinitely large defect); Kt is the stress concentration factor. Thus, solutions (2.10) and (2.11) are
asymptotically equivalent, i.e., coincide as η → 0 and η → 1. However, for other practically important values of the
parameter η, these solutions differ (Fig. 6).

Let us estimate the limit load using the fictitious crack method. For this, we consider an arbitrary section
through the center of the cavity along the Oz axis. For such a fictitious crack of length L, which begins on the
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boundary of the cavity and is located in the dangerous section z = 0, the stress intensity factor is determined from
expression (1.16) in which instead of σθ(r, 0) we use σz(r, 0). Proceeding further as in the problem of a circular
hole, we obtain

p∗/σc = 1/f(η), η = a/(a + d), 0 ≤ η ≤ 1, (2.12)

where

f(η) = 1 +
4 − 5ν

8(7 − 5ν)

(
3 +

1
η

)(1
η

)−5/2

+
9

128(7 − 5ν)

[
64 + 5

(1
η
− 1

)3

+ 24
(1

η
− 1

)2

+ 48
(1

η
− 1

)](1
η

)−9/2

.

Dependence of (2.12) is presented in Fig. 6. It is evident that the fictitious crack method gives a result closer
to the result obtained using the two-dimensional structural criterion.

In [13], it was assumed that the effect of a spherical pore on the strength of an alloy based on tungsten
carbide and cobalt (WC–10% Co) is equivalent to the effect of a disk-shaped crack of the same diameter. This
hypothesis is confirmed by the estimates obtained above using the structural approach (curves 4 and 5 in Fig. 6).
From Fig. 6, it follows that for spherical pores of small sizes (compared to d), there is good agreement between the
critical loads for a circular crack and a spherical cavity. In this case for the two-dimensional structural criterion,
the values of the critical loads almost coincide. For both defects in the vicinity of the point η = 0, we have the
estimate

p∗/σc = 1 − η2 + O(η3).

For a ≤ 1.6d, the relative difference between the critical loads does not exceed 5% for a material with ν = 0.25. For
smaller values of Poisson’s ratio, this difference is slightly larger and at for ν = 0.5, it is the smallest. The use of
the two-dimensional structural criterion in the problem considered may be preferred.

To obtain a quantitative estimate of the dimensional critical load, it is necessary to specify the value of the
structural parameter d. In the problem in question, we use the solution for a disk-shaped crack as an approximate
version. As noted above, the maximum value of the structural parameter is equal to d and is determined from
formula (1.4) and its minimum value is equal to 4d/9. Indirect comparison with experimental data [13] indicates
that the best agreement between the theoretical and experimental data is obtained if the structural parameter d
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is calculated in the same way as in the planar problem, i.e., by formula (1.4). We note that the minimally safe
diameter of a spherical pore was determined in [14] using the gradient approach and the structural parameter d

calculated by formula (1.4); for WC–10% Co cermet, it equals 2.237d.
Conclusions. The analysis of experimental data and theoretical estimates of the strength of materials with

sharp notches and smooth stress concentrators suggests that in planar problems, the structural fracture parameter
d can be determined using two standard characteristics: the tensile strength limit σc and the fracture toughness
KIc. For spatial defects in an uniaxial tension field with a circular interface between the boundary conditions, it is
reasonable to determine the critical load using the two-dimensional version of the structural fracture criterion.

The analysis showed that the structural criterion provides a qualitative description of the dependence of the
strength of a solid on the stress concentrator sizes in both planar and spatial problems. To obtain a more reliable
quantitative estimate of critical loads, it is required to specify the value of the structural fracture parameter d based
on experimental data.
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